by Fabian Gerson* and Pascal Merstetter

Institut für Physikalische Chemie der Universität Basel, Klingelbergstr. 80, CH-4056 Basel

and Mark Mascal and Nicholas M. Hext

Department of Chemistry, University of Nottingham, Nottingham NG7 2RD, United Kingdom

Azatriquinane (= 10-azatricyclo[5.2.1.0^{1,10}]decane; **1**) was oxidized to its radical cation **1**⁺⁺ by γ - irradiation in a CF₂ClCFCl₂ matrix at 77 K. A prominent feature of the ESR spectrum of **1**⁺⁺ is the ¹⁴N-hyperfine anisotropy which broadens the components with $M_1(^{14}N) = \pm 1$. The observed coupling constants are $a_N = + 2.5$ and $a_H = + 4.0$ mT for the ¹⁴N nucleus and the three methine β -protons, respectively. While the a_N value points to pyramidalization at the N-atom comparable to that in the radical cation of quinuclidine (=1-azabicyclo[2.2.2]octane; **4**), an eclipsing of the singly occupied orbital at this atom by the three C-H_{β} bonds is indicated in view of the large a_H value. Theoretical calculations on the geometry of **1**⁺⁺ are in accord with the conclusions drawn from the experimental findings.

Introduction. – Azatriquinane (= 10-azatricyclo[5.2.1.0^{1,10}]decane; **1**)¹) has been recently synthesized [1]. It can be considered both as a cyclic dehydrotriisopropylamine (**2**) [2] and a perhydro derivative of the hypothetical cycl[2.2.2]azinyl radical (**3**[•]) [3]; moreover, its triene analogue, azatriquinacene, has been proposed as a precursor to 1,16-diazadodecahedrane [4]. An X-ray crystal structure was obtained for the HBF₄ salt of **1** [4], and the geometry of **1** was calculated at the 6-31G* *ab-initio* level of theory [5]. In contrast to its acyclic analogue **2** which is planar [2] or slightly nonplanar [6], **1** should be distinctly cup-shaped and of C_3 symmetry, with the five-membered rings arranged in a twisted conformation [5]. At the level of the applied theory, pyramidalization at the N-atom of **1** is predicted to be comparable to that in the structurally related quinuclidine (= 1-azabicyclo[2.2.2]octane; **4**).

The vertical ionization energy of **1** was determined by photoelectron (PE) spectroscopy as 7.80 eV [5] which is a little lower than the corresponding value of **4** (8.05 eV) [7], but substantially higher than that of **2** (7.18 eV) [2]. Ionization of an amine primarily implies removal of an electron from the N lone pair and causes flattening of the molecule at the N-atom. The radical cations of acyclic and monocyclic amines are thus generally planar [8]. However, in those of polycyclic amines such as **4**, and, even more so, 1-azanorbornane (=1-azabicyclo[2.2.1]heptane; **5**), planarity cannot be achieved because of the rigid molecule framework [9]. It has thus been of interest to investigate the structure of **1**⁺⁺ by ESR spectroscopy, in order to inquire into the geometry of this tricyclic radical cation.

¹⁾ The systematic *IUPAC* name of **1** is octahydro-2aa,4aa,6aa-1*H*-pyrrolo[2,1,5-cd]pyrrolizine.

Results. – Oxidation of **1** to **1**⁺⁺ failed when the amine was treated with SbF₅ in CH₂Cl₂ at 195 K, although this method was successful for trialkylamines having their vertical ionization energies below 8 eV [10]. On the other hand, an ESR spectrum of a radical cation ($g = 2.0035 \pm 0.0001$) was readily observed upon γ -irradiation of **1** with a ⁶⁰Co source in a 'mobile' CF₂ClCFCl₂ matrix. At 77 K, this spectrum exhibited a threeproton quartet spaced by 4.00 ± 0.05 mT. Raising the temperature to 125 K led to the appearance of additional much broader lines flanking the original quartet at a distance of 2.5 ± 0.1 mT, as shown in *Fig. 1*. This finding is interpreted in terms of ¹⁴N-hyperfine anisotropy which can be accounted for by the formula [11a]

 $1.w. = A + B M_I + C M_I^2$

where l.w. is the line-width and $M_{\rm I}$ are the quantum numbers of the ¹⁴N-nuclear spin. The central quartet has $M_{\rm I}({}^{14}{\rm N}) = 0$ and l.w. = A = 0.4 mT, whereas the broad lateral lines are due to components with $M_{\rm I}({}^{14}{\rm N}) = \pm 1$ and l.w. = A + C = 0.8 mT ($B \approx 0$). The observed spectrum is thus consistent with that expected for 1⁺⁺, being characterized by the coupling constants $|a_{\rm N}| = 2.5$ and $|a_{\rm H}| = 4.0$ mT for the ¹⁴N nucleus and the three methine β -protons, respectively (*Fig. I*)²). Hyperfine splittings from the twelwe methylene γ -protons are not resolved (< 0.1 mT).

The spectrum of 1^{++} disappeared when the CF₂ClCFCl₂ matrix was warmed above its softening point (130 K). It was replaced by a multiline-hyperfine pattern presumably due to a radical arising from the matrix by the abstraction of a Cl atom ($|a_{\rm F}| = 1.81$ and $|a_{\rm Cl}| = 0.42$ mT).

Discussion. – Planar radical cations of trialkylamines give rise to a ¹⁴N-coupling constant, a_N , of + 2.0 mT³), deviations from which do not exceed 0.1 mT [10]. In such species, the singly occupied orbital at the N-atom has a 'pure p-character' with the a_N value being due to p,s-spin polarization [11b]. A direct s-contribution to the orbital by pyramidalization increases a_N , so that the observed ¹⁴N-coupling constant can be taken

²⁾ In ESR spectroscopy, protons separated from a π-center by 0, 1, 2, ... sp²-hybridized C-atoms are denoted α, β, γ.....

³) The positive signs of $a_{\rm N}$ and $a_{\rm H}$ are required by theory.

Fig. 1. ESR Spectrum of 1^{+} in a CF₂ClCFCl₂ matrix at 125 K and the corresponding stick diagram

as a measure of nonplanarity of the radical cation. As mentioned in the *Introduction*, the bicyclic radical cations 4^{++} and 5^{++} represent examples of this effect on a_N ; their ¹⁴N-coupling constants are + 2.51 and + 3.02 mT, respectively [9]. The similar geometry at the N-atom in 1 and 4 is thus shared by their radical cations 1^{++} and 4^{++} which have practically the same a_N value. An increase of 0.5 mT relative to the ¹⁴N-coupling constants for planar radical cations of amines points to a moderate pyramidalization at the N-atom. The finding that such an increase is twice as large for 5^{++} than for 1^{++} and 4^{++} is not unexpected, considering the enhanced resistance to flattening of the strained framework in 5.

The geometry at the N-atom in trialkylamines and their radical cations is reflected by the sum, $\sum \varphi$, of the three CNC angles φ and by the distance, d, of the N-atom from the plane of the three attached C neighbors. Planarity requires $\sum \varphi = 360^{\circ}$ and d = 0, while a decreasing $\sum \varphi$ and an increasing d indicate that pyramidalization becomes more pronounced. The *Table* gives these values calculated by the AM1 [12] and, in part, the *ab-initio* 6-31G* [13] procedure for $1/1^{++}$, $2/2^{++}$, $4/4^{++}$, and $5/5^{++}$. As anticipated, they comply with the flattening of the amine on passing from the neutral molecule to its radical cation and they correlate with a_N in the sequence $2^{++} < 1^{++} \approx 4^{++} < 5^{++}$.

The coupling constant, $a_{\rm H}$ = + 4.00 mT³), of the three methine β -protons in **1**⁺ is likewise informative with respect to the structure of the radical cation. As for the β -protons in general, it arises by direct p,s-spin delocalization from the p-orbital at the spin-bearing center to 1s-AOs of the H-atoms (hyperconjugation) [11b]. (In this

Table. Geometry Parameters for $1/1^{++}$, $2/2^{++}$, $4/4^{++}$, and $5/5^{++}$, Calculated by the AM1, and in Part, the 6-31G* (values in italics) Procedure^a) vs. the Coupling Constants a_N and a_H of β -Protons

	1	1· +	2	2· +	4	4· +	5	5· +
∑φ [°]	326 <i>331</i>	343 <i>346</i>	349 ^b) <i>360</i>	360	325	340	308	325
<i>d</i> [pm]	52 47	36 24	28°) 0	0	52	39	65	52
$a_{\rm N} [{\rm mT}]$		+2.50		$+2.02^{d}$)		$+2.51^{e}$)		$+3.02^{\rm e}$)
θ [°]	0 12	0 13	88 90	89	58	60	44/75 ^f)	47/75 ^f)
$\cos^2\theta$		1.00 0.95		0		0.25		0.47/0.07 ^f)
$a_{\rm H}[{ m mT}]$		+4.00		$+0.15^{d}$)		$+0.94^{e})$		$+1.51/+0.30^{\circ})^{f}$

^c) Experimental values 5 [2] and 26 pm [6]. ^d) Taken from [10]. ^e) Taken from [9]. ^f) *Exo/endo* protons.

respect, the small s contribution to the p-orbital at the N-atom in nonplanar radical cations of amines can be neglected, although it is responsible for the increase in the ¹⁴N-coupling constant.) The $a_{\rm H}$ value of a β -proton is proportional to $\cos^2\theta$, where θ is the dihedral angle between the C-H_{β} bond and the axis of the p-orbital [14]. The *Table* also lists the angles θ calculated by the same procedures as $\sum \varphi$ and d for the four amines and their radical cations; they are, in each case, similar for the neutral molecule and its ionized form. The $\cos^2\theta$ values for the radical cations meet the expected proportionality to the pertinent $a_{\rm H}$. Most striking is the difference between $\mathbf{1}^{*+}$ and $\mathbf{2}^{*+}$. Whereas in the former the C-H_{β} bonds almost eclipse the orbital axis at the N-atom ($\cos^2\theta \approx 1$), they are nearly perpendicular to such an axis in the latter. This point is illustrated in *Fig. 2* by the relevant *Newman* projections for $\mathbf{1}^{*+}$ and $\mathbf{2}^{*+}$.

Fig. 2. Newman projections at the N-atom along a N-C bond in 1^{+} and 2^{+}

We thank Prof. *Edwin Haselbach*, Fribourg, for the permission to use his ⁶⁰Co source, and *Claudio Carra*, in the same place, for the *ab-initio* $6-31G^*$ calculations on 1^{++} .

Helvetica Chimica Acta - Vol. 81 (1998)

REFERENCES

- [1] M. Mascal, N. M. Hext, O. V. Shishkin, Tetrahedron Lett. 1996, 37, 131.
- [2] H. Bock, I. Göbel, Z. Havlas, S. Liedle, H. Oberhammer, Angew. Chem., Int. Ed. Engl. 1991, 30, 187.
- [3] R. D. Brown, B. A. W. Coller, *Mol. Phys.* **1959**, *2*, 158; R. J. Windgassen, Jr., W. H. Saunders, V. Boekelheide, *J. Am. Chem. Soc.* **1959**, *81*, 1459.
- [4] N. M. Hext, J. Hansen, A. J. Blake, D. E. Hibbs, M. B. Hursthouse, O. V. Shishkin, M. Mascal, J. Org. Chem. 1998, 63, in press.
- [5] V. Galasso, J. Hansen, D. Jones, M. Mascal, J. Mol. Struct. (Theochem.) 1997, 392, 21.
- [6] R. Boese, D. Bläser, M. Y. Antipin, V. Chaplinski, A. de Meijere, J. Chem. Soc., Chem. Commun. 1998, 781.
- [7] D. H. Aue, H. M. Webb, M. T. Bowers, J. Am. Chem. Soc. 1976, 98, 311.
- [8] Y. L. Chow, W. C. Danen, S. F. Nelsen, D. H. Rosenblatt, Chem. Rev. 1978, 78, 243.
- [9] W. C. Danen, R. C. Rickard, J. Am. Chem. Soc. 1975, 97, 2303.
- [10] P. Merstetter, Dissertation Basel 1998; F. Gerson, P. Merstetter, A. de Meijere, E. Haselbach, to be published.
- [11] See, e.g., F. Gerson, 'High-Resolution ESR Spectroscopy', Wiley and Verlag Chemie, New York and Weinheim, 1970, a) Appendix A.1.3, b) Chapt. 1.5.
- [12] M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 1985, 107, 3902.
- [13] Spartan, Version 3.1.5. Wavefunction Inc. Irvine, CA, 1993. See also: W. J. Hehre, L. Radom, R. v. R. Schleyer, J. A. Pople, 'Ab Initio Molecular Orbital Theory', Wiley, New York, 1986.
- [14] C. Heller, H. M. McConnell, J. Chem. Phys. 1960, 32, 1535; A. Horsfield, J. R. Morton, D. H. Whiffen, Mol. Phys. 1961, 4, 425.

Received July 28, 1998